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Abstract 
A key rate-limiting step in using electronic health records for research is the creation of electronic phenotyping 
algorithms. It is widely agreed that methods for electronic phenotyping should use the totality of EHR data including 
clinical notes, laboratory test results and medication orders, besides the coded administrative data that are readily 
available. In addition to efforts at creating consensus definitions for health outcomes, there are efforts at using 
machine learning to construct descriptions of phenotypes in lieu of traditional “algorithms” that identify patients 
with a health outcome of interest. A bottleneck in scaling the use of manually created clinical phenotyping 
algorithms is the time required in their creation and for the machine learning approaches the bottleneck is the 
creation of a manually labeled gold standard for training. It is clear that just focusing on manually creating larger 
training sets is not cost-effective. We demonstrate the feasibility of using large, automatically created ‘silver 
standards’ from comprehensive EHR data, in conjunction with expert knowledge codified in existing ontologies, to 
create phenotype models via machine learning.  
 
Introduction 
As electronic health records (EHRs) become available for research, there are a multitude of efforts for identifying 
sets of patients that correspond to a phenotype of interest (1, 2, 3, 4). Robust descriptions or “algorithms” for 
phenotypes that can be applied across clinical data warehouses would allow reuse of data already collected in EHRs 
to advance our understanding of disease, to improve clinical practice, and to make discoveries through clinical data 
mining (5). Thus, solving the electronic phenotyping problem could address one of the key barriers in clinical 
research informatics— the effort required for identifying cases and abstracting clinical data (3). 

Recent advances in EHR-driven phenotyping are breaking down these barriers. (For a review, see (1).) For example, 
Liao et al (6) showed that regression models trained on labeled data can accurately identify rheumatoid arthritis 
cases with a PPV of 94%. Carroll et al (7) showed that the coefficients of such models constitute a kind of 
phenotype description that is portable across sites with high accuracy (AUC 92-97%); and finally, Carrell et al (8) 
argue in a study on breast cancer recurrence that natural language processing (NLP) techniques could reduce the 
number of charts reviewed for identifying cases by 90%. Their findings are similar to earlier findings demonstrating 
the equivalent performance of using NLP-based methods (AUC 0.85) with that of manual approaches (AUC 0.87) 
(9). Importantly, Carrell et al note that the NLP techniques miss only 8% of cases (5 out of 65), most of which (80%; 
4 out of 5) were due to not having documents at all. Several authors argue that the comprehensive use of EHRs 
outweighs the use of codified data alone and can enable the construction of portable phenotype descriptions (2, 6, 7). 
By comprehensive, we mean that in addition to billing procedure and diagnostic codes, we include patient 
demographics, features extracted from clinical notes (such as medically relevant phrases from admission, discharge 
and progress notes as well as radiology and pathology reports), medication prescriptions, and laboratory data over 
the entire length of the record. 

There is general agreement that the rate-limiting step in clinical informatics research is the generation of clinical 
phenotype descriptions that can be used to build patient cohorts (3) and that just focusing on manually creating 
larger training sets is not cost-effective (10). If we reduce the time in “assigning clean labels” by settling for 
automated and possibly less than perfect silver standards, we can leverage the “comprehensiveness and volume” of 
EHR data to get accurate enough phenotype models that enable discovery as well as advance medical practice (11-
15). If we pursue a machine-learning approach to identifying the set of patients that constitute a cohort of interest, 
the problem boils down to having accurately labeled patients, i.e., a sufficiently large set of people with (and 
without) the phenotype of interest, accompanied with their comprehensive EHR data to be used as features.  

We report here the analyses and results from two separate experiments. First, by an analysis at Columbia University 
Medical Center, we demonstrate face validity and feasibility of compiling silver standards by showing that features, 
most significantly associated with a phenotype identified using descriptive phrases, included features that were a 
priori expected to be useful in confirming the condition. In the second experiment using data from Stanford 
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Translational Research Integrated Database Environment (STRIDE), we demonstrate the almost automated 
construction of phenotype models for four conditions. Even though the two experiments were done independently 
and features identified in the Columbia analysis were not used in the analysis done at Stanford, we find that for the 
one phenotype common to both experiments (pancreatitis), the majority of features identified in these independent 
analyses were common. 

Methods 
The key idea for our approach is to produce a set of patients using mentions of keywords with high positive 
predictive value in the narratives to identify cases, which together with randomly selected controls comprise a silver 
standard from which to learn a phenotype model.  The assumption is that if a patient exhibits the phenotype of 
interest, then a doctor is likely to mention something about the phenotype in their notes. Whereas, if the patient does 
not have the phenotype the doctor is not likely to mention anything about the phenotype. Of course, “rule out 
diagnoses” and “provisional diagnoses” are the sources of error for such an approach. However, in such cases where 
the condition is suspected, but not attributed, we use negation detection to eliminate it as a case. 

 
All notes are pre-indexed with all possible keywords. Thus, once a set of words and phrases is defined, retrieving 
relevant clinical notes containing the enumerated keywords is a simple (fast) lookup against an inverted index. By 
setting up the pipeline in this “search-engine” mindset, the process of keyword enumeration to note retrieval takes 
on the order of seconds. 

Selection of phenotypes 
We chose phenotypes that cover the chronic to acute spectrum of manifestation and are used commonly in a variety 
of activities ranging from drug safety surveillance to comparative effectiveness studies. Acute pancreatitis (AP), 
acute myocardial infarction (AMI), and rhabdomyolysis (RML) have acute presentation, while type II diabetes 
(T2DM), congestive heart failure (CHF), rheumatoid arthritis (RA), atrial fibrillation (AF), and progressive 
multifocal leukoencephalopathy (PML) are chronic conditions. AMI, AF, RML and PML were chosen from the 
Observational Medical Outcomes Partnership’s Health Outcomes of Interest. AP and RA were chosen based on 
previous work in pharmacovigilance (16, 17). T2DM and CHF were included as examples of highly prevalent 
conditions. 

Data sets 
Two datasets were used in this study. The first is from Columbia University Medical Center’s Allscripts Sunrise 
(Allscripts, Chicago, IL) EHR. The dataset includes 600,707 patients from 2008 to 2013 with inpatient notes or 
primary care clinic notes. The second dataset is from STRIDE and covers 1.2 million patients, with 20.7 million 
encounters, 35 million coded diagnoses and procedures, 130 million laboratory test results, 14 million medication 
orders and a combination of pathology, radiology, and transcription notes totaling over 20 million clinical notes. 
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Analysis at Columbia University Medical Center 
The following phrases were searched for exact matches ignoring case but without negation handling in the entire 
narrative corpus: acute myocardial infarction, atrial fibrillation, progressive multifocal leukoencephalopathy, 
rhabdomyolysis, acute pancreatitis.  A random sample of patients who had notes during the same period was chosen 
as a comparison group. All clinical laboratory tests performed on the patients in the five disease groups and two 
control groups were tallied. We calculated the strength of pairwise associations between diseases and clinical 
laboratory test types using a t-test and ranked the associations according to the p-values. 

Before carrying out the analysis, the following candidate laboratory tests were pre-selected as likely to be important 
for phenotyping based on existing definitions (18), review of clinical diagnostic criteria and common treatments for 
the diseases: for atrial fibrillation, coagulation studies such as international normalized ratio (INR), prothrombin 
time (PT), and activated partial thromboplastin time (aPTT); for acute myocardial infarction, troponin; for 
pancreatitis, lipase and amylase; for rhabdomyolysis, creatine kinase; and for progressive multifocal 
leukoencephalopathy, immune system function measures. 

Analysis at Stanford University  
Labeling cases and controls (creating a silver standard) 
For each phenotype, in addition to the exact matches for a phenotype term, we identify and include a synonymous 
set of words and phrases using previously described methods (19,20). In brief, the algorithm leverages the structure 
of ontologies to infer all synonyms spanning all concepts subsumed by the phenotype of interest as well as concepts 
that are similar in meaning. We also incorporate negation and family history detection to reduce potential 
misattributions. In addition to synonym expansion, we apply a term disambiguation module to further increase the 
accuracy of phenotype attribution. For example, “pad” could refer to peripheral artery disease or diaper pad, so we 
examine the contextual distribution of terms within such notes to disambiguate them. For PAD, peripheral artery 
disease cases would be expected to have nearby terms related to vasculature and limbs whereas diaper pads would 
be expected to have nearby terms relating to infants.  The set of all patients thus identified comprise the possible 
cases for our silver standard from which we randomly sample. Finally, we construct a random sample of controls 
taken from all other patients disjoint with possible cases, i.e., without the phenotype related keywords. 

Engineering a Comprehensive Feature Set 
For each case and each control, we extract all data from laboratory results, prescription medications, all other words 
(words and phrases not contained in the phenotype enumeration) from clinical notes, as well as the coded data. For 
the task of characterizing the phenotype in general, we keep all data points for the case after time-zero (defined as 
the timestamp of the first note in the patient’s record that has a keyword identifying the phenotype). Using the 
keyword-based method to identify cases and controls as described above we identify 750 cases and 750 controls for 
each of the four phenotypes (AP, T2DM, CHF, RA). 

For features from the narrative portion, we utilize term-to-concept mappings from UMLS to normalize words into 
concepts and record the number of distinct notes in which the feature occurs one or more times (for a given patient). 
This step reduces the total number of features significantly because many words map to one concept. For 
medications, we normalize to active ingredients and record a boolean presence or absence. Finally, for labs, we 
record the type of order, the specific test, and the observed result as reported by the lab information management 
system (e.g., high, medium, low), and the number of distinct observed results per test (per patient). 

We create two sets of features. The first set comprises four categories of features derived from narratives, lab tests, 
prescriptions and ICD-9 codes and result in a feature vector of over 20,000 features (Table 2) for each phenotype. 
We censor the words and phrases used to compile the silver standard training set. In the second set of features, we 
start with the first set of features and exclude all the features coming from narratives resulting in a feature vector of 
roughly 7,000 features (Table 2). 

Learning a Phenotype Model 
We require that our model be interpretable and incorporate non-linear interdependencies among the features. We 
also need a method that handles large feature vectors. For instance, it could be the case that the presence of a given 
lab result, along with the presence of several concepts in the clinical notes is predictive of the phenotype in question. 
We use random forests (20% testing holdout; 5-fold cross-validation) as they can model complex feature 
interdependence while being highly robust to overfitting. Additionally, the resulting model is interpretable in that 
features that appear near the roots of many of the trees in the random forest are more discriminative. Our analysis 
pipeline was implemented in python and used the random forests implementation in scikit-learn (21). Our compute 
platform was a system with 16 cores and 170 GB RAM, which allowed for timing training and test runs. 
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Results 
With the Columbia data set, we demonstrate the feasibility of constructing a set of patients, with a phenotype, using 
keywords in the narratives to identify cases. As described in the methods, we pre-selected a few lab tests for each 
disease with the hypothesis that these would turn out to be highly associated with the disease condition. The results 
of this analysis for the five diseases are shown in Table 1. In all five cases, the top associations were those 
laboratory tests expected a priori to detect or confirm disease diagnosis or treatment. This finding lends face validity 
to the ability of a naïve approach to find useful features using a narrative corpus to create a silver standard.  
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In the analysis conducted at Stanford, shown in Figure 1, we attempted automated creation of a silver standard 
(using long terms as keywords), followed by construction of a random forest learner and cross-validation as depicted 
in Figure 1. We performed two sets of experiments, whose results are shown in Table 2. In the first, we use four 
categories of features derived from narratives, lab tests, prescriptions and billing codes as described in methods. We 
censor the words and phrases used to compile the silver standard training set. In the second, we excluded features 
derived from narrative text. In this latter case, the top 30 features for Pancreatitis learned from the Stanford data 
contain 10 of the 20 lab tests identified as highly associated at Columbia, without any reconciliation of the lab test 
names. Normalization of the lab tests via LOINC codes would increase the degree of overlap. 
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 Using features derived from narratives, labs, 
billing codes, and prescriptions 

Using features derived from labs, billing codes, 
and prescriptions 

 Features TP FN FP TN Acc PPV Features TP FN FP TN Acc PPV 

Pancreatitis 29579 138 13 32 117 0.85 0.81 7476 127 15 32 126 0.84 0.80 

T2DM 24586 137 19 22 139 0.87 0.86 6734 134 27 15 124 0.86 0.90 

CHF 25130 125 11 26 125 0.88 0.83 7094 120 23 22 135 0.85 0.85 

RA 24187 129 21 29 121 0.83 0.82 6531 137 16 41 106 0.81 0.77 
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Discussion 
Research has already demonstrated that the use of narrative text can reduce the cost of creating a true standard (by 
90%) (8, 22). In the current work, we propose automated methods to create silver standard training sets, and learn 
phenotype models. We conceptualize the phenotyping problem along three dimensions (Figure 2): a feature 
dimension (i.e., what features are used to characterize a phenotype), a time dimension (does the model support a 
time variant definition of the phenotype) and a complexity dimension (how complex is the model corresponding to a 
phenotype definition). The consensus algorithms developed by collaborative projects such as www.phekb.org are 
denoted by an ‘X’ mark. Our approach is an effort to reach the 
position denoted by the asterisk. 

We evaluate feasibility of our approach in two ways: First we 
examine face validity of using narratives as a source for 
identifying highly associated laboratory tests via a univariate 
analysis (at Columbia). This analysis would identify a “black 
box” effect where we could be getting a good performance for 
reasons other than the narrative really providing a usable silver 
standard. Once we are satisfied that the use of narrative text to 
create patient sets identifies reasonable features, we move on 
to the second task of obtaining good classification 
performance while preserving interpretability of the learned 
phenotype model. 

For training our phenotype models, we select controls by 
random sampling from a set of patients who do not have a 
mention of any of the keywords used to assign the class labels 
for the phenotype. An alternative approach could be to match 
controls on clinical and demographic parameters such as age, 
gender, race and ethnicity, overall degree of sickness (15, 19) 
that may be estimated using comorbidity and drug indices. We 
intend to examine the effect of using matched controls in 
future work to determine whether matching controls on various demographic and clinical parameters results in better 
models.  In our experiments we define features based on concepts, codes, prescriptions and lab test status that occur 
after the "time-zero". Advanced feature engineering, for example, incorporating TF-IDF (a statistic for the relative 
importance of words in a document relative to a corpus), could help reduce error from routine concepts that occur in 
a lot of patient notes.  

EHR-based phenotyping bridges studies that advance the science of medicine (11) and studies that advance the 
practice of medicine (13). Reliable methods of electronic phenotyping will allow consistent, scalable, reusable, and 
portable ways to identify cohorts of patients from EHR data. We chose eight phenotypes to make our preliminary 
case, and note that we can scale to hundreds of phenotypes quite easily. 
 
Our efforts demonstrate that it is possible to use large, automatically created silver standards from comprehensive 
EHR data, in conjunction with expert knowledge codified in existing ontologies, to create phenotype models via 
machine learning approaches. The agreement between features identified at two sites for the one phenotype that was 
examined at both sites provides hope that the models will generalize across sites. 
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