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The Problem

Scenario:

You learned causal model M from real world data D generated
from unknown true model T .

Question:
How close is M to T?
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Solution Strategies

Statistical measures of fit: individual score is not
informative; best fit could still be inaccurate

Benchmark simulations: incomplete; may not apply to this
type of data; may not even be able to know if they apply

Resimulation: benchmark against data that is similar to D
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Resimulation 0: Data D1 and Learned Graph G1
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Resimulation 1: Fit G1 to D1, making model M1
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Resimulation 2: Sample D2 from M1

Each row sampled from PM1(X1,X2,X3,X4)
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Resimulation 3: Learn G2 from D2, compare to G1

G2 (right) contains 2 of the 3 edges in G1 (left), and no additional
edges.
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Hsim 0: Data D1 and Learned Graph G1
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Hsim 1: Fit G1 to D1, making model M1
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Hsim 2: Pick variables to resimulate

Variables can be selected or chosen at random.
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Hsim 3: Sample D2 from M1

Each row sampled from PM1(X2|X1 = x1,X3 = x3,X4 = x4)
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Hsim 4: Learn G2 from D2, compare to G1

G2 (right) contains all edges oriented towards X2 in G1 (left). G2
contains no additional edges connected to X2.
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Simulation Parameters

Simulated 500 “true” graphs and sampled data.

Run FGES and calculate actual accuracy measures.

Estimate accuracy with full and hybrid resimulation.

Model parameters:

Gaussian noise
Functional relationships:

Linear
Nonlinear
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Linear

(100) (300) (900)

Figure: Simulation study results for linear models, showing mean
estimation errors for AR, AP, OR, and OP at sample sizes 100, 300, and
900. Error bars represent 95% confidence intervals of the mean
estimates shown.
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Nonlinear

(100) (300) (900)

Figure: Simulation study results for nonlinear models, showing estimation
errors for AR, AP, OR, and OP at sample sizes 100, 300, and 900. Error
bars represent 95% confidence intervals of the mean estimates shown.
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