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1 Introduction
‘Self-controlled’ methods (such as the case-crossover (CC) (Maclure, 1990), case time-control
(CTC) (Suissa, 1995), and self-controlled case series (SCCS) (Farrington, 1995)) are popular in
epidemiology and other fields. The reason for their popularity is that they can adjust for all
baseline confounders, even unobserved baseline confounders such as subjects’ full genetic codes
or deep-seeded fears, by exploiting longitudinal data to in some sense use subjects as their own
controls.

To achieve this feat, however, self-controlled methods rely on strong assumptions that lead to
various drawbacks. In their original incarnations, the CC, CTC, and SCCS all: (1) estimate in-
stantaneous hazard ratios, i.e. the effect of exposure at time t on the probability of the outcome
occurring at time t; (2) assume that effects are constant across subjects and time; (3) are unable
to adjust for observed postbaseline confounders that are influenced by past exposures; and (4)
only handle binary exposures and outcomes. Each method also makes additional idiosyncratic
non-standard assumptions: the CC assumes no time trends in exposure; the CTC assumes similar
time trends in exposure among cases and controls; and the SCCS assumes no outcome depen-
dent exposures. Further, the CTC posits a conditional logistic regression model for exposure
with subject specific effects, while the SCCS posits a Poisson process for the outcome, also with
subject specific effects.

Various modifications of these seminal methods have partially relaxed some of the above re-
strictions. For example, Schuemie et al. (2015) present a SCCS model that breaks down the
effect of exposure over time into independent acute and cumulative components. However, to
our knowledge, the Self-Controlled Structural Nested Mean Model (sc-SNMM) we present here
is the first self-controlled method that: (1) allows for general time-varying effects of exposure;
(2) can model heterogeneity as a function of observed baseline or time varying covariates; (3)
can adjust for observed time varying confounders that are influenced by past exposure; and (4)
can handle continuous or binary exposures and continuous, binary, or survival outcomes.

These advantages are not at the cost of stronger assumptions relative to existing methods. Be-
yond the standard causal assumptions of consistency and sequential exchangeability (conditional
on all baseline confounders and observed time varying confounders), the sc-SNMM requires: (1)
correct specification of a fixed effects model either for exposure or a transformation of the out-
come; and (2) that unobserved baseline confounders are not also effect modifiers. Assumption
(1) is no stronger than the similar assumptions required by the CTC and SCCS. And while (2)
is a major effect homogeneity assumption, it is weaker than the similar implicit homogeneity
assumptions of existing methods. Thus, the sc-SNMM relaxes several important restrictions on
existing self-controlled methods at no additional cost.
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The organization of the paper is as follows. In Section 2, we lay out notation and review the
counterfactual causal framework for time varying treatments in which sc-SNMMs are defined.
In Section 3, we define and explain sc-SNMMs. In Section 4, we derive estimators for the pa-
rameter of an sc-SNMM under a fixed effects model for either exposure or (a transformation of)
the outcome. In Section 5, we present self controlled structural nested cumulative failure time
models (sc-SNCFTMs), which are modifications of sc-SNMMs for survival outcomes. In Section
6, we present a data analysis estimating the effect of thiazolidinedinodes (TZDs), a second line
diabetes therapy, on bone fractures from a large medical claims database.

2 Notation and Counterfactual Framework
Suppose we observe a cohort of N subjects indexed by i ∈ {1, . . . , N}. For now, assume that each
patient is observed at regular intervals from baseline time 0 through end of followup time K,
and there is no loss to follow-up. Let Am denote treatment received at time m, Ym the outcome
of interest at time m, and Lm a vector of time varying covariates (including past values of the
outcome) at time m. For arbitrary time varying variable X, we denote by X̄m the history of X
through time m, i.e. (X0, . . . , Xm), and we denote by Xm the future of X from time m through
time K, i.e. (Xm, ..., XK). Finally, we let α denote an unmeasured, possibly continuous and
multidimensional, baseline variable.

We adopt the counterfactual framework for time-varying treatments (Robins, 1986) which posits
that corresponding to each treatment regime ām, each subject has a counterfactual or potential
outcome Ym;ām that would have been observed had that subject received treatment regime ām.

Throughout, we make the causal assumptions:

Consistency: Ym;Ām = Ym ∀m, Ām (1)

α− Sequential Exchangeability:Am ⊥⊥ Ym;āK |L̄m, Ām−1, α ∀m, āK (2)

Consistency is a standard assumption stating that observed outcomes are equal to counterfactual
outcomes corresponding to observed treatments. This assumption is necessary to link observed
data to the parameters of a causal model for counterfactual outcomes.

α-Sequential exchangeability essentially states that there are no unobserved confounders except
for α. This is a weaker version of the standard sequential exchangeability assumption (Robins,
1986) that essentially states that there is no unobserved confounding at all.

3 The Causal Model
The self-controlled Structural Nested Mean Model (sc-SNMM) is defined as

γm(Ām, L̄m; Ψ) = E[Y m+1;Ām,0
|Ām, L̄m, α]− E[Y m+1;Ām−1,0

|Ām, L̄m, α] (3)

where γm is a known K −m dimensional function equal to 0 whenever Ψ = 0. An sc-SNMM
models the effect of receiving treatment am at timem followed by no further treatment compared
to no treatment at time m or afterward conditional on treatment and covariate history through
time m and unobserved baseline covariate α. γm(Ām, L̄m; Ψ) is sometimes referred to as a ‘blip
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function’ because it models the effect of a final blip of treatment at time m.

(3) is very similar to a standard SNMM (Robins, 1994), the difference being the presence of unob-
served baseline covariate α in the conditioning events on the right hand side. That γm(Ām, L̄m; Ψ)
does not include α as an argument implies the additional assumption

No Effect Modification by Unobserved Baseline Confounders (4)

That is, α is not an effect modifier. This is a major assumption, but still weaker than the effect
homogeneity assumptions implicit in other self-controlled methods.

From a policy perspective, analysts are not necessarily interested in the effect of final blips
of treatment at various times. The more common reason to fit a (sc)- SNMM is that given the
parameter of interest Ψ, one can estimate the expected counterfactual outcome trajectory in the
population in the total absence of treatment, i.e. E[ȲK;0̄].

4 An Estimator of Ψ
Define Hm(Ψ) to be the K −m dimensional vector with components

Yt −
t∑

j=m

γj,m(Āj , L̄j ; Ψ) (5)

for t in m+ 1, . . . ,K. If Ψ∗ is the true value of Ψ, Hm(Ψ∗) has the properties that

E[Hm(Ψ∗)|Ām, L̄m, α] = E[Ym+1;Ām−1,0|Ām, L̄m, α] (6)

and
E[Hm(Ψ∗)|Ām, L̄m, α] = E[Hm(Ψ∗)|Ām−1, L̄m, α] (7)

Suppose that we somehow had access to E[Am|Ām−1, L̄m, α]. Then we could obtain an unbiased
estimate of Ψ by solving the estimating equations∑

i

∑
m

Hi,m(Ψ)(dm(Ai,m)− E[dm(Am)|Āi,m−1, L̄i,m, αi]) = 0, (8)

where dm is some function with dimension dim(Ψ). Unfortunately, it is not possible to non-
parametrically obtain a consistent estimate of E[Am|Ām−1, L̄m, α] as we do not observe α. How-
ever, suppose we specify the following parametric model:

Am = µα + fm(Ām−1, L̄m; θm) + εm (9)

where E[εm|Ām−1, L̄m, µα] = 0 and µα is a subject level fixed effect. We can estimate θ by
solving the estimating equation

∑
i

∑
m
gm(Āi,m−2, L̄i,m−1){(Ai,m − fm(Āi,m−1, L̄i,m; θm)) − (Ai,m−1 − fm−1(Āi,m−2, L̄i,m−1; θm−1))} = 0 (10)

In (10), the difference of differences in the braces cancels out µα, which remains constant across
time for each subject under model (9), allowing us to estimate θ. Now define

Eθ̂[Am|Ām−1, L̄m, α] ≡ 1

K

∑
j 6=m

(Aj − fj(Āj−1, L̄j ; θ̂j)) + fm(Ām−1, L̄m; θ̂m) (11)
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Since, given θ, E[Aj−fj(Āj−1, L̄j−1; θj)] = µα for each j, the first term on the RHS of (11) is an
unbiased estimate of µα, making (11) an unbiased estimate of E[Am|Ām−1, L̄m, α] in the limit
as N → ∞. (However, note that (11) is not a consistent estimator since K does not go to ∞).
If d(Am) ≡ d(Ām, L̄m) is linear in Am, then Eθ̂[d(Am)|Ām−1, L̄m, α] ≡ d(Eθ̂[Am|Ām−1, L̄m, α])
is an unbiased estimate of E[d(Am)|Ām−1, L̄m, α].

Consider the estimating equations∑
i

∑
m

Hi,0m(Ψ)(dm(Ai,m)− Eθ̂[dm(Am)|Āi,m−1, L̄i,m, αi]) = 0, (12)

whereHst(Ψ) denotes the (t−s)th component ofHs(Ψ) defined in (5), i.e. Yt−
∑t
k=s γkt(Āk, L̄k; Ψ).

(12) is similar to the estimating equations (8) that we would use to estimate Ψ if α were observed
and conditional expected exposures E[dm(Am)|Āi,m−1, L̄i,m, αi] were known. We have just re-
placed Hm(Ψ) by H0m(Ψ) and E[dm(Am)|Āi,m−1, L̄i,m, αi] by Eθ̂[dm(Am)|Āi,m−1, L̄i,m, αi] as
defined in (11). Below, we will show that the estimator solving (12) is asymptotically unbiased
for Ψ.

We will need the following result:

Lemma 1. E[H0t|Ām, L̄m, α] = E[H0t|Ām−1, L̄m, α] ∀m, t.

Proof. See appendix.

Now, note that as θ̂ → θ, Am − Eθ̂[Am|Ām−1, L̄m, α] → (εm − 1
K

∑
j 6=m εj) where ε is as

defined in (9). We then have that

Proposition 1. E[H0m(Ψ)(Am − Eθ̂[Am|Ām−1, L̄m, α])]→ 0 as θ̂ → θ ∀m.

Proof.
E[H0m(Ψ)(Am − Eθ̂[Am|Ām−1, L̄m, α])]

→ E[H0m(Ψ)(εm − 1
K

∑
j 6=m εj)] as θ̂ → θ

= E[E[H0m(Ψ)εm|Ām−1, L̄m, α]]− 1
K

∑
j 6=mE[E[H0m(Ψ)εj |Āj−1, L̄j , α]]

= E[E[H0m(Ψ)|Ām−1, L̄m, α]E[εm|Ām−1, L̄m, α]]− 1
K

∑
j 6=mE[E[H0m(Ψ)|Āj−1, L̄j , α]E[[εj |Āj−1, L̄j , α]]

(by Lemma 1)
= 0

For d(Am) ≡ d(Ām, L̄m) linear in Am, the argument in the proof of Proposition 2 also shows
that E[H0m(Ψ)(d(Am)−Eθ̂[d(Am)|Ām−1, L̄m, α])] = 0, thus demonstrating that (12) are asymp-
totically unbiased estimating equations for Ψ.

To recap, we can consistently estimate Ψ by estimating equations (12) under: model (3); as-
sumptions (1), (2), and (4); and exposure fixed effects model (9).

4.1 Estimation Based on an Alternative Fixed Effects Model
Instead of the fixed effects exposure model (9), suppose we specified the following parametric
model for H0m(Ψ):

H0m(Ψ) = λα + hm(Ām−1, L̄m;φm) + εHm (13)
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where E[εHm|Ām−1, L̄m, λα] = 0 and λα is a subject level fixed effect.

Then consider the estimating equations∑
i

∑
m

{(Hi,0m(Ψ)−hm(Āi,m−1, L̄i,m; φ̂m))−(Hi,0m−1(Ψ)−hm−1(Āi,m−2, L̄i,m−1; φ̂m−1))}d(Āi,m−1, L̄i,m−1) = 0

(14)
for arbitrary function d(Āi,m−1, L̄i,m−1).

Proposition 2. The estimating equations (14) are asymptotically unbiased for Ψ if the fixed
effects model (13) is correctly specified.

Proof.
E[(H0m(Ψ)− hm(Ām−1, L̄m;φm))− (H0m−1(Ψ)− hm−1(Ām−2, L̄m−1;φm−1))d(Ām−1, L̄m−1)] =
E{
E[H0m(Ψ)− hm(Ām−1, L̄m;φm)|Ām−1, L̄m−1, α]d(Ām−1, L̄m−1)−
E[H0m−1(Ψ)− hm−1(Ām−2, L̄m−1;φm−1)|Ām−2, L̄m−1, α]E[d(Ām−1, L̄m−1)|Ām−2, L̄m−1, α]
}
= 0

Thus, we can consistently estimate Ψ under: model (3); assumptions (1), (2), and (4); and
transformed outcome fixed effects model (13).

5 Survival Outcomes
We now consider survival settings, where existing self-controlled methods are most frequently
applied. Survival outcomes are events that can only occur once, such as death, a first myocardial
infarction, or a first anything. Because survival outcomes are so often harmful, they are frequently
referred to as ‘failures’. Let Yk = 1 denote failure before k, so Yk = 1 implies that Yj = 1 for
all k ≤ j ≤ K. Whenever failure has already occurred and Yj = 1, we define, by convention,
Lj = Aj = 0. To estimate effects of time-varying treatments in this scenario in the absence of
unobserved baseline confounding, Piccioto et al. (2012) proposed a Structural Nested Cumulative
Failure Time Model (SNCFTM). Here, we propose a self-controlled SNCFTM (or sc-SNCFTM):

eγm,k(Ām,L̄m;Ψ) =


E[Yk;Ām,0

|Ām,L̄m,Ym=0,α]

E[Yk;Ām−1,0
|Ām,L̄m,Ym=0,α]

, if Ym = 0

1, if Ym = 1
(15)

where γm,k(Ām, L̄m; Ψ) = 0 when Ψ = 0 or Am = 0. (15) is a model for the conditional mul-
tiplicative effect of one last blip of treatment at time m on the cumulative risk of failure by
time k. The absence of α as an argument of γm,k(Ām, L̄m; Ψ) again implies assumption (4) that
unobserved confounders are not effect modifiers.

We define

Hmk(Ψ) =

{
Ykexp{−

∑k−1
j=m γj,k(Āj , L̄j ; Ψ)}, if Ym = 0

1, if Ym = 1
(16)

It can be shown that for Ψ∗ the true value of Ψ,

E[Yk;Ām−1,0|L̄m, Ām, α] = E[Hmk(Ψ∗)|L̄m, Ām, α] (17)

= E[Hmk(Ψ∗)|L̄m, Ām−1, α] (18)
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By arguments similar to those in Section 4, it follows that under fixed effects model for exposure
(9), the estimating equations

∑
i

∑
m

{(dm(Ai,m)− Eθ̂[dm(Am)|Āi,m−1, L̄i,m, αi])×
K∑

k=m+1

Hi,0k(Ψ)} = 0 (19)

are asymptotically unbiased for Ψ under model (15).

6 Data Analysis
Thiazolidinediones (TZDs) are second-line therapies for type 2 Diabetes known to cause bone
fractures. We fit a sc-SNMM to estimate the effect of TZDs on bone fractures among a cohort
of diabetes patients initially prescribed metformin (the widely recommended first line therapy).
We obtained our data from a large medical claims database.

First prescription of metformin after diagnosis with diabetes was taken to be baseline. Am
indicated use of a TZD in month m after baseline, Ym indicated the occurrence of a fracture in
month m after baseline, and Lm denoted time varying confounders at month m after baseline.
The time-varying confounders comprised indicators of the occurrence of 13 common diabetes
complications in the past 3 months and indicators of the occurrence of the same complications
at any point after baseline. We chose these confounders because switching from metformin to
a TZD may be prompted by development of diabetes complications, which in turn may be as-
sociated with fractures. There are surely other time-varying confounders we neglected to include.

For illustrative purposes, we specified a simple linear blip model in which past diabetic neu-
ropathy (DN) was the only effect modifier:

γmt(Ām, L̄m; Ψ) = amΨ1 + amDNmΨ2 + am(t−m)Ψ3 (20)

This is a model of the conditional effect on the likelihood of a fracture at month t of one last
month of taking a TZD at month m compared to never taking a TZD at month m or later. Ψ2

determines how this effect is modified by past DN, and Ψ3 determines how this effect decays or
grows over time since the last blip of TZD.

We also specified a linear fixed effects model for probability of a patient taking a TZD at month
m as a function of past and current diabetes complications and whether the patient was on a
TZD the previous month:

Am = µα + (Lrecent1m , . . . , Lrecent13m , Lever1m , . . . , Lever13m , Am−1)θ (21)

We then estimated θ by solving estimating equations (10), plugged our estimate θ̂ into the esti-
mating equations (12) for Ψ, and computed bootstrap standard errors for Ψ. The results were:
Ψ̂1 = .002 (se = .0009); Ψ̂2 = .001 (se = .0006); Ψ̂3 = −.0002 (se = .00008). Assuming correct
specification of the blip model (20) and the fixed effect exposure model (21), the interpretation
of our estimate of Ψ is that a final blip of TZD treatment increases the probability of a fracture
at future months, moreso in patients with DN, and the magnitude of the effect decays gradually
over time since the final treatment.

The fracture rate in the observed data was .14 per 5 person-years. Using Ψ̂, we estimated
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that this rate would have declined by .002 fractures (se = .0004) per 5 person-years in the cohort
had TZDs never been prescribed. The small relative size of this effect is partly due to the fact
that only about 1 in 1000 patients in the cohort were ever prescribed TZDs.

7 Discussion and Future Work
We have introduced sc-SNMMs and sc-SNCFTMs for estimating causal effects from longitudinal
data in the presence of baseline confounding. Other methods that exploit longitudinal data to
eliminate baseline confounding have been dubbed ‘self-controlled’ (Maclure et al., 2012). The
self-controlled methods we present here are the first that can handle general time-varying effects
(e.g. arbitrary cumulative or lagged effects of exposure) and adjust for time-varying confounders
that are influenced by past treatment.

Of course, causal inference in the presence of confounding does not come free, and all self-
controlled methods must make assumptions. Our estimators of the parameters of sc-SNMMs
and sc-SNCFTMs are consistent provided: (a) correct specification of a fixed effects model for
exposure or the (transformed) outcome; and (b) none of the unobserved baseline confounders
are also effect modifiers. The fixed effect models for exposure and outcome are similar to models
underlying case-time-control and self-controlled case series estimators, respectively. Our effect
homogeneity assumption is weaker than similar implicit assumptions underlying alternative self-
controlled methods. We note that the more baseline variables are collected, the weaker our
homogeneity assumption becomes as only unobserved confounders are prohibited from being ef-
fect modifiers.

One shortcoming of our method is that fixed effect models (9) and (13) are bound to be techni-
cally misspecified for binary exposures and outcomes as they are not strictly bounded by 0 and
1. However, the models may still approximately fit and the method can reasonably be applied in
such cases, as illustrated in our data analysis. Suitable fixed effect models for binary data would
be of great interest beyond sc-SNMMs and sc-SNCFTMs. That our method is well suited to
continuous exposures and outcomes is also an advantage over existing self-controlled methods.

Another extension we are pursuing is self-controlled optimal regime Structural Nested Mean
Models (sc-opt-SNMMs) for learning optimal treatment strategies in the presence of baseline
confounding. We also hope to develop efficient and double robust estimators.
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9 Appendix
Proof of Lemma 1

Proof. Case 1: t ≥ m
E[H0t|Ām, L̄m, α] = E[Yt −

∑t
j=0 γjt(Āj , L̄j ; Ψ)|Ām, L̄m, α]

= E[Hmt|Ām, L̄m, α]− E[
∑m−1
j=0 γjt(Āj , L̄j ; Ψ)|Ām, L̄m, α]

= E[Hmt|Ām−1, L̄m, α]−
∑m−1
j=0 γjt(Āj , L̄j ; Ψ) by (7)

= E[H0t|Ām−1, L̄m, α]
Case 2: t < m
The result is trivial.
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