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EHR 

Phenotyping from Electronic Health Records 

 Limitations of existing phenotyping methods 

– Labor intensive 

– Unable to discover novel phenotypes 
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Our Project on Phenotyping using Tensor 
Factorization 

 NSF SCH INT project between Georgia Tech, Vanderbilt,  
UT Austin, Northwestern 
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Constructing Feature Tensor 
 Tensor is a generalization of matrix 

– Matrix is a 2nd order tensor 

 Tensors can better capture interactions among concepts 

Data element types: 
• Binary  
• Count (integer) 
• Continuous 

(numeric) 
Mode 
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Limestone 

Ho, Joyce C., Joydeep Ghosh, Steve R. Steinhubl, Walter F. Stewart, Joshua C. Denny, Bradley A. Malin, and Jimeng Sun. 
“Limestone: High-Throughput Candidate Phenotype Generation via Tensor Factorization.” Journal of Biomedical Informatics. 2014  
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Phenotyping through Tensor Factorization 
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Candidate Phenotype k 
(40% of patients) 
Hypertension 

Beta Blockers Cardio-Selective 

Thiazides and Thiazide-Like Diuretics 

HMG CoA Reductase Inhibitors 

λk 

Example Phenotype 

Diagnosis factor 

Medication factor 

Patients  
factor 

 

a phenotype = a group of patients that share 
common characteristics (e.g. diagnosis, medication) 
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Limestone 
Nonnegative input tensor 

Nonnegative constraints 

Stochastic column constraints on factor matrices 

Hard thresholding on elements in factor matrices 

Ho, Joyce C., Joydeep Ghosh, Steve R. Steinhubl, Walter F. Stewart, Joshua C. Denny, Bradley A. Malin, and Jimeng Sun. 
“Limestone: High-Throughput Candidate Phenotype Generation via Tensor Factorization.” Journal of Biomedical Informatics. 2014 

Hard thresholding constraints 
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 Medication orders from Geisinger dataset 

 Diagnosis codes aggregated into HCC codes  

 Medications are defined as pharmacy subclass 

 31,816 patients x 169 diagnoses x 471 medications 

Quantitative Experiment Setup 
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 Task: predict patients with heart failure (HF) 

 Model: logistic regression with ℓ1 regularization 

 10 random even splits of the dataset (50% training) 

 
 Comparison methods for feature construction: 

1. Baseline using source independence matrix 

2. Principal Component Analysis (PCA) 

3. Nonnegative Matrix Factorization (NMF) 

4. Limestone 
 

 

Quantitative Evaluation: HF Prediction 
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Small # of features 
outperforms 640 features 

Predictive Performance 



22 

Phenotype 3  
(17.6% of patients) 
Diabetes with No or 
Unspecified Complications 
Sulfonylureas 
Biguanides 
Diagnostic Tests 
Insulin Sensitizing Agents 
Diabetic Supplies 
Meglitinide Analogues 
Antidiabetic Combinations 

Phenotype 4  
(31.1% of patients) 
Hypertension 
ACE Inhibitors 
Thiazides and Thiazide-Like 
Diuretics 

Phenotype 5  
(36.7% of patients) 
Other Ear, Nose, Throat, and Mouth 
Disorders 
Viral and Unspecified Pneumonia, Pleurisy 
Significant Ear, Nose, and Throat 
Disorders 
Cough/Cold/Allergy Combinations 
Azithromycin 
Fluoroquinolones 
Sympathomimetics 
Penicillin Combinations 
Antitussives 
Glucocorticosteroids 
Tetracyclines 
Anti-infective Misc. - Combinations 
Clarithromycin 
Cephalosporins - 2nd Generation 
Cephalosporins - 1st Generation 
Expectorants 

Uncomplicated 
Diabetes 

Mild Hypertension Chronic Respiratory 
Inflammation/Infection  

Qualitative Evaluation:  
Major disease phenotypes can be identified 
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Phenotype 4  
(31.1% of patients) 
Hypertension 
ACE Inhibitors 
Thiazides and Thiazide-Like 
Diuretics 

Mild Hypertension 
Phenotype 6  
(24.3% of patients) 
Hypertension 
Calcium Channel Blockers 
Antihypertensive Combinations 
Antiadrenergic Antihypertensives 
Potassium Sparing Diuretics 

Severe Hypertension 
Phenotype 2 
(31.5% of patients) 
Hypertension 
Beta Blockers Cardio-Selective 
Angiotensin II Receptor 
Antagonists 
Loop Diuretics 
Potassium 
Nitrates 
Alpha-Beta Blockers 
Vasodilators 

Moderate Hypertension 

Qualitative Evaluation:  
Disease subtypes can be identified 

Over 80% phenotype factors are clinically meaningful 
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Limestone vs. NMF 

Limestone provides more concise phenotype representation 
than NMF 
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Summary: Phenotyping using Tensor Factorization 

 Unsupervised: Sparse Nonnegative tensor factorization can be used 
to learn phenotypes without supervision 

 

 Predictive: Resulting phenotypes outperforms features from raw 
EHR data in predictive modeling tasks. 
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