Phenotyping from Electronic Health Records using Tensor Factorization

Jimeng Sun

jsun@cc.gatech.edu

PHENOTYPING FROM EHR WITH TENSOR FACTORIZATION

Project: SCH: INT: Collaborative Research: High-throughput Phenotyping on Electronic Health Records using Multi-Tensor Factorization

Principal Investigators

Jimeng Sun Associate Professor College of Computing Georgia Tech

y Sun Brad Professor Biomedi Computing and Con I Tech Vander

Bradley Malin Associate Professor As Biomedical Informatics Bio and Computer Science Vanderbilt University Va

Joshua Denny Associate Professor Biomedical Informatics and Medicine Vanderbilt Utnvierty Joydeep Ghosh Professor Electrical & Computer Engineering Univ of Texas, Austin

Abel Kho Assistant Professor Medicine - Biomedical Informatics Northwestern Univ

Funding Source: NSF Smart Connect Health Integrated Grant: Award Number 1418511

Phenotyping from Electronic Health Records

- Limitations of existing phenotyping methods
 - Labor intensive
 - Unable to discover novel phenotypes

Our Project on Phenotyping using Tensor Factorization

This talk

 NSF SCH INT project between Georgia Tech, Vanderbilt, UT Austin, Northwestern

Constructing Feature Tensor

- Tensor is a generalization of matrix
 - Matrix is a 2nd order tensor
- Tensors can better capture interactions among concepts

Limestone

Ho, Joyce C., Joydeep Ghosh, Steve R. Steinhubl, Walter F. Stewart, Joshua C. Denny, Bradley A. Malin, and Jimeng Sun. "Limestone: High-Throughput Candidate Phenotype Generation via Tensor Factorization." Journal of Biomedical Informatics. 2014

Phenotyping through Tensor Factorization

Example Phenotype

a phenotype = a group of patients that share common characteristics (e.g. diagnosis, medication)

Limestone

- Nonnegative input tensor
- Nonnegative constraints
- Stochastic column constraints on factor matrices
- Hard thresholding on elements in factor matrices

$$\min f(\mathcal{M}) \equiv \min \sum_{\mathbf{i}} [m_{\mathbf{i}} - x_{\mathbf{i}} \log m_{\mathbf{i}}]$$

s.t $\mathcal{M} = [\![\boldsymbol{\lambda}; \mathbf{A}^{(1)}; ...; \mathbf{A}^{(N)}]\!] \in \Omega$
 $\Omega = \Omega_{\lambda} \times \Omega_{1} \times \cdots \times \Omega_{N}$
Hard thresholding constraints
 $\Omega_{\lambda} = [0, +\infty)^{R}$
 $\Omega_{An} = \{\mathbf{A} \in \{0, [\gamma_{n}, 1]\}^{I_{n \times R}} \mid ||\mathbf{a}_{:r}||_{1} = 1 \quad \forall r\}$

Ho, Joyce C., Joydeep Ghosh, Steve R. Steinhubl, Walter F. Stewart, Joshua C. Denny, Bradley A. Malin, and Jimeng Sun. "Limestone: High-Throughput Candidate Phenotype Generation via Tensor Factorization." *Journal of Biomedical Informatics*. 2014

Quantitative Experiment Setup

- Medication orders from Geisinger dataset
- Diagnosis codes aggregated into HCC codes
- Medications are defined as pharmacy subclass
- 31,816 patients x 169 diagnoses x 471 medications

Quantitative Evaluation: HF Prediction

- Task: predict patients with heart failure (HF)
- Model: logistic regression with l_1 regularization
- It random even splits of the dataset (50% training)
- **Comparison methods** for feature construction:
 - 1. Baseline using source independence matrix
 - 2. Principal Component Analysis (PCA)
 - 3. Nonnegative Matrix Factorization (NMF)
 - 4. Limestone

Predictive Performance

Small # of features outperforms 640 features

Qualitative Evaluation: Major disease phenotypes can be identified

Uncomplicated Diabetes

Mild Hypertension

Chronic Respiratory Inflammation/Infection

Phenotype 3
(17.6% of patients)
Diabetes with No or
Unspecified Complications
Sulfonylureas
Biguanides
Diagnostic Tests
Insulin Sensitizing Agents
Diabetic Supplies
Meglitinide Analogues
Antidiabetic Combinations

Phenotype 4
(31.1% of patients)
Hypertension
ACE Inhibitors
Thiazides and Thiazide-Like
Diuretics

Phenotype 5
(36.7% of patients)
Other Ear, Nose, Throat, and Mouth
Disorders
Viral and Unspecified Pneumonia, Pleurisy
Significant Ear, Nose, and Throat
Disorders
Cough/Cold/Allergy Combinations
Azithromycin
Fluoroquinolones
Sympathomimetics
Penicillin Combinations
Antitussives
Glucocorticosteroids
Tetracyclines
Anti-infective Misc Combinations
Clarithromycin
Cephalosporins - 2nd Generation
Cephalosporins - 1st Generation
Expectorants

Qualitative Evaluation: Disease subtypes can be identified

Mild Hypertension
Phenotype 4
(31.1% of patients)
Hypertension
ACE Inhibitors
Thiazides and Thiazide-Like
Diuretics

Moderate Hypertension

Phenotype 2 (31.5% of patients)
Hypertension
Beta Blockers Cardio-Selective
Angiotensin II Receptor
Antagonists
Loop Diuretics
Potassium
Nitrates
Alpha-Beta Blockers
Vasodilators

Severe Hypertension

Phenotype 6
(24.3% of patients)
Hypertension
Calcium Channel Blockers
Antihypertensive Combinations
Antiadrenergic Antihypertensives
Potassium Sparing Diuretics

Over 80% phenotype factors are clinically meaningful

Limestone vs. NMF

Limestone Phenotype	
Hypertension	0.94
	0.06
	0.51

... 1,549 total combinations

Limestone provides more concise phenotype representation than NMF

Summary: Phenotyping using Tensor Factorization

- Unsupervised: Sparse Nonnegative tensor factorization can be used to learn phenotypes without supervision
- Predictive: Resulting phenotypes outperforms features from raw EHR data in predictive modeling tasks.

Phenotyping from Electronic Health Records using Tensor Factorization

Jimeng Sun jsun@cc.gatech.edu Georgia College of Computting Computting

- 1. Ho, Joyce C., Joydeep Ghosh, Steve R. Steinhubl, Walter F. Stewart, Joshua C. Denny, Bradley A. Malin, and Jimeng Sun. "Limestone: High-Throughput Candidate Phenotype Generation via Tensor Factorization." *Journal of Biomedical Informatics*. 2014
- Ho, Joyce C., Joydeep Ghosh, and Jimeng Sun. "Marble: High-Throughput Phenotyping from Electronic Health Records via Sparse Nonnegative Tensor Factorization." In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 115–24. KDD '14.