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Abstract 

Optimal use of preventive care could prevent over 50,000 deaths per year in those under 80 years of age. Although 

guidelines have been established, rates of use of preventive care are below recommended levels. Increased use of 

these services can be induced by reminding physicians with alerts and clinical decision support. Initially defining 

and updating the content for the alerts and finding where they fit in ordering workflow is time consuming, deterring 

their use. We attempt to solve this problem by creating a data-driven system that automatically learns current 

preventive care ordering practices. We designed a framework for preventive order recommendation using machine 

learning. We refined this system and a study cohort using colonoscopy order histories. The colonoscopy classifier 

output by the system achieves a receiver operating characteristic area under the curve of 0.893. In comparison to 

existing guidelines, the classifier predicts orders at a similar sensitivity but higher specificity. These results are 

encouraging, indicating that this framework for learning preventive order recommendations is feasible. 

 

Introduction 

Preventive medicine focuses on preventing disease rather than treating it
1
. It achieves this by using practices such as 

health promotion, immunization, and screening
1
. Currently, many preventative orders exist in medical systems. 

Some examples include colonoscopies and mammograms, which are used for colon and breast cancer screening. The 

guidelines that specify when to place preventive orders for screening purposes can be complex, often involving a 

systematic review of clinical evidence. These guidelines are created by experts and updated over time
2
. Although 

guidelines have been established, rates of preventive service use are below recommended levels
3
. One prominent 

example of this can be seen in colorectal cancer screening, for which only 59.1% of adults had been screened in 

2010
4
. Farley et al. estimated in 2010 that optimal use of nine of the most common preventive measures could 

prevent an additional 50,000-100,000 deaths per year in those under 80 years of age
5
.  

 

Increased use of preventive services can be induced by reminding physicians when to give preventive care using 

alerts and clinical decision support in the computerized order entry (CPOE) system, leading to improved practitioner 

performance
6
. There are, however, challenges and associated costs with integrating decision support and guidelines 

into clinical practice via CPOE
7
. Two major challenges are 1) the manual maintenance of decision support content 

and guidelines, and 2) the practicality of the decision support at the time of use. The first challenge pertains to 

keeping the guidelines up to date and relevant. Updates to guidelines, which decision support requires as input, 

necessitate an administrator to periodically check and modify each guideline instance. The second challenge 

involves the practicality of the clinical decision support timing. In situations such as acute care, it may not be 

appropriate to remind the provider to schedule a preventive screening. As a result of these challenges, clinical 

decision support has not always been implemented when it can and should be
8
. 

 

One popular method used to generate recommendations from data is machine learning. Machine learning has been 

used in many fields to discover patterns in data sets
9
. Since electronic medical record (EMR) data reflects physician 

perceived guidelines used to place orders, research has utilized the data to automatically generate decision support 

content
10,11

. Studies have used techniques such as Bayesian networks to analyze local order-entry data
10

, frequent 

item set and association rule mining to learn order sets and corollary orders
 12

, and market-basket analysis with 

natural language processing to provide order recommendations
13

. These methods all focus on producing order sets 

and corollary orders. Our study focuses on preventive orders as opposed to order sets, and uses a binary 

classification method instead of trying to group orders. Similar to the other studies, we do not attempt to learn new 

information or guidelines, but seek to learn when orders are placed, and build a system that will predict them. 

 

In this paper, we attempt to solve the problem of automatically recommending preventative clinical orders to 

physicians. We use supervised machine learning to develop a system which mines clinical ordering patterns 

(specifically targeting preventive orders), automatically learning existing practices for when orders should be placed 

based on various clinical and operational features using data in the EMR. The system analyzes current ordering 

patterns made by physicians, using the operational features to predict the practicality of ordering at each 

appointment. Specifically, we analyze non-traditional operational meta-data such as appointment length, 

appointment location, and days between appointment and scheduled date in the classification model. This system is 
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generalizable in that it is able to learn the ordering practices specific to a given medical center, and update 

periodically as guidelines change. The trained system can be used to recommend preventive orders at future 

appointments for patients that satisfy the learned criteria. 

 

Methods 

Overview 

In this study, we describe a system that uses supervised 

machine learning to build a model to predict whether a 

preventive order should be placed in a patient’s upcoming 

appointment. We treat the prediction as a supervised 

classification problem, and classify orders in a binary 

fashion. Features for the classifier were chosen from 

observations that were made regarding clinical guidelines 

and patterns in workflow for preventive orders. The system 

works as follows: 1) a target order is specified, 2) clinical 

and operational features along with order history are input to 

the classifier, 3) the classifier is trained on the data set, and 

4) the classifier’s predictions are evaluated on retrospective 

order histories. Using random forests generated from the 

input data, the output classifier can then predict if the order 

for specific patients is placed (i.e., the recommendation). 

The target order that we use to test our system is 

colonoscopy, as a preventive order for colorectal cancer 

screening (Fig. 1). 

 

Setting 

This study was conducted using data from the Vanderbilt University Medical Center (VUMC) in middle Tennessee. 

The subjects of the data used in this study are patients in 2013 at the VUMC for whom physicians placed outpatient 

orders. This study was approved by Vanderbilt’s IRB. 

 

Data 

The data used as input to the classifier consisted of patient data such as demographics, medical history and 

appointment data. The data came from the Vanderbilt Outpatient Order Management (VOOM) system and StarPanel 

system. VOOM is Vanderbilt’s self-developed order entry system for outpatient orders. StarPanel is Vanderbilt’s 

homegrown electronic medical record system
14

. Since we focused on predicting the outcome of ordering during 

specific appointments, we separated data into “events”, or appointments that consisted of information about the 

patient, their history, and logistics about the appointment taken from both sources. Data from VOOM provides the 

order-entry data, patient demographics and the orders’ International Classification of Diseases (ICD9) codes. 

StarPanel additionally provides appointment information, clinical notes, ICD9 code history and current procedural 

terminology (CPT) code history. The StarPanel data was joined with the medical record numbers and dates within 5 

days from the VOOM data set. A constraint on date ensured that the order was made after the appointment date. 

 

The input for the system included patient data and clinical operations data. Patient data, such as demographics and 

history, provide features that generate decisions close to those of established guidelines. Operational information 

(e.g. appointment length, location, and length of time from the date the appointment was made) is important in 

providing insight into where the order fits in the ordering workflow. It is not always practical to order preventive 

orders in every appointment. If screening alerts were generated for every appointment, then these alerts may hinder 

instead of help the clinicians find the orders that are relevant. However, because our goal is to predict which patients 

were likely candidates for the specified order, we avoided using information from the day of the appointment, such 

as patient complaints and other orders made that day. This information is unused because it correlates with the 

patient’s diagnosis for that day, not with flags for preventive care. 

 

Feature analysis and selection 

We selected classes of features for the classifier that we believed would capture the guidelines for preventive orders. 

All features could only include information that is available before the appointment in which the order was placed. 

Since our test order was colonoscopy, we started with the feature classes of age, time from last procedure, and 

Figure 1. Overview of our target system 

architecture; our test order is colonoscopy. 
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clinical note keywords (e.g., colorectal cancer, polyps) from colonoscopy guidelines
15

. We then added operational 

features that we believed would give insight into the appropriate timing of the order in the workflow. All feature 

classes were tested for how well they helped to predict the order. We used the following feature classes: 

Age: The age of the patient in years. We chose age because preventive orders are often scheduled based on age.  

Time from last procedure: The last time the procedure/test associated with the order was performed in years, maxed 

at 15. We chose this feature because guidelines recommend colonoscopies once every 5-10 years [15].  

ICD9 parent code: All ICD9 parent codes in the medical history of the patient. Each ICD9 code is a binary feature. 

Clinical note: The last time since a keyword was seen in clinical notes in the medical history of the patient, 

measured in years, maxed at 15. Each keyword is one feature, and keywords must be manually specified. We 

selected keywords that were indicators of high risk for colorectal cancer (Appendix A) [15].  

Days from date scheduled: The days between the date the appointment was scheduled and date of appointment. We 

chose to test this feature because we observed that appointments made for sudden problems (e.g., injury, illness) 

were not likely to have preventive orders. We hypothesized that appointments created over a month in advance are 

more likely to be checkups, in which an order made for the purpose of screening has a better chance of being placed.  

Appointment length: The length of time in minutes that the appointment is scheduled for. We chose to test this 

feature because we observed that the pre-assigned lengths of time for check-up appointments differ from those of 

appointments for specific problems. We hypothesized that preventive orders were more likely to be given at check-

up appointments, which would have a different amount of time pre-allocated.  

Appointment location: The location of appointment from 88 possible locations. Each location is a binary feature. 

 

The input of a classification system is a feature matrix and a target or outcomes matrix. Each row in the feature 

matrix refers to an event, denoted by a medical record number and date. Each column represents a different feature. 

The features we used were binary (e.g., locations: was at location or not) and real-valued (e.g., age). The 

corresponding row in the outcomes matrix is a binary representation of whether the order was made that day or not. 

By this design, a patient can have more than one entry in the matrices if they had multiple appointments.  

 

We created a classifier to test each of the listed classes of features, and compared their area under the receiver 

operating characteristic (ROC) curve (AUC) scores. Next, we combined the features into one combined classifier, 

and removed or kept the features that we deemed to be important to the classifier by examining the AUC of different 

combinations of the classes of features and comparing Gini importance values (e.g., weighted mean value describing 

classification accuracy as random forest nodes are split)
16

.  

 

Classification 

Python’s scikit-learn package for machine learning was used to develop the classifiers for orders. Many different 

methods can be used for classification, including Naive Bayes, logistic regression and random forests. We chose to 

use random forests as a result of preliminary experiments, in which we found that the relationships between the data 

are inherently nonlinear. The random forest used 100 estimators, a minimum sample size of 20 per node, and a 

maximum depth of 5. Since random forests never compare features to one another, normalization is unnecessary. To 

tune our system, we chose to use colonoscopy as our test order. We analyzed the performance of the 7 feature 

classes in individual classifiers and a combined classifier, and removed features that did not improve prediction.  

 

Input refinement 

Initially, we tested the system on the entire 

population. However, after a preliminary analysis, 

we discovered the cohort required refinements in 

large part because orders were not always placed 

in a preventive setting. Therefore, we filtered the 

population to target events in which patients had a 

colonoscopy as a preventive order by removing 

events from the gastrointestinal (GI) medicine and 

gastroenterology departments (Table 1). 

Colonoscopy orders placed from these departments 

were likely to be for non-preventive reasons. After additional analysis, we observed that some locations never 

placed certain preventive orders such as colonoscopy, potentially inflating the true negative prediction rates. We 

therefore developed a second subpopulation in which we removed events from locations that had never ordered 

colonoscopies previously, resulting in 14 remaining locations (Table 1). To analyze these refinements, we compared 

Table 1. Population and subpopulations that were used as 

input for the system.  

Population Number of Events 

Entire VOOM population 106869 

Population where appointments with 

orders from the departments GI 

medicine and gastroenterology are 

removed 

80782 

Population restricted to locations 

from which colonoscopy is ordered 

50258 
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the resulting AUC of the final classifier on the subpopulations and total population. Specifically for the individual 

location classifier, we examined the sensitivity and specificity of the predictions, oversampling the positive class 

events to be equal to the negative (increasing prior probability) and using a threshold of p ≥ 0.5. 

 

Classifier evaluation 

We evaluated the performance of the colonoscopy classifier by using 5-fold cross validation and calculating the 

average ROC AUC scores. In our cross validation, the folds were created by shuffling rows, keeping rows from the 

same patient together. By doing this, we ensured that all events by one patient were placed in the same folds to keep 

the results consistent for each patient.  

 

Comparison to existing guidelines 

We compared the performance of our classifier to the performance of existing base guidelines for colonoscopy 

screening by measuring the sensitivity and specificity of predicting ordered colonoscopies. For these predictions, we 

oversampled the positive class events to equal the negative class and used a threshold of p ≥ 0.5. The base guidelines 

we used as a model for comparison included a check for the age of the patient within a range of 50-75 and the 

number of years since the last colonoscopy was performed (10≤ if no history in the clinical note included keywords 

in Appendix A, 5≤ if a history was found). 

 

Results 

Characteristics of Data Set 

The data from VOOM was taken in the 2013 year. During this time period 585,000 orders were placed by 1,000 

clinicians, representing 63,027 distinct patients. The VOOM data was joined with data from StarPanel to obtain 

additional information. The summary statistics for this joint data set are presented (Table 2). 

Classification results 

Table 3 shows the results for each feature class 

used to construct its own classifier, tested on the 

total population. The results show the location 

classifier performed the best followed by the age 

and ICD9 classifiers.  

 

Table 4 details the classification results on various 

populations. The combined classifier using the 

original 7 classes of features on the total 

population had an AUC of 0.819 (Table 4). After 

removing the gastro-related departments, the AUC 

of the combined classifier increased to 0.865 

(Table 4). In addition, the AUCs of the individual 

classifiers were constant or increased (Table 3). 

 

 

 

Table 4. Mean AUC for combined classifier for colonoscopy using 5-fold cross validation. 

Classifier AUC 

Classifier with 7 feature classes, on total population 0.819 

Classifier with 7 feature classes, on subpopulation where events from gastro-related departments 

removed 

0.865 

Classifier with 6 feature classes (ICD9 parent code history features removed), on subpopulation where 

events from gastro-related departments removed 

0.923 

Classifier with 6 feature classes (ICD9 parent code history features removed), on subpopulation where 

events from gastro-related departments and  locations where colonoscopy were never ordered removed  

0.893 

Table 3. Mean AUC for each separate classifier for 

colonoscopy using 5-fold cross validation 

Classifier Number 

of 

Features 

Total 

Population 

AUC 

Removed 

Department 

Events AUC 

Age 1 0.680 0.774 

Time from last 

procedure 

1 0.540 0.563 

ICD9 parent 

code history 

649 0.684 0.771 

Clinical note 12 0.590 0.627 

Days from date 

scheduled 

1 0.587 0.591 

Appointment 

length 

1 0.647 0.708 

Appointment 

location 

88 0.850 0.858 

 

Table 2. Joint data summary statistics 

Total number of distinct patients 58550 Total number of colonoscopy orders 1454 

Total number of distinct orders 1335 Average number of orders per appointment 5.733 

Total number of appointments 87616 Average number of colonoscopies per appointment 0.017 
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We examined the features with the highest impact 

on the classifier (by sorting the features by the 

Gini importance value). The top ten features 

sorted by their impact on the prediction using 

Gini importance are presented (Table 5). Age and 

location were found to have the highest impact on 

prediction. Additionally, we observed that the 

ICD9 parent code history class contributed 649 

features, all of which had very low importance 

separately. After removing the ICD9 features, the 

AUC increased to 0.923 (Table 4). 

 

The six classes of features in the final classifier 

were age, time from last procedure, days from date scheduled, clinical note, appointment length and appointment 

location. The high AUC of the appointment location classifier led to additional testing for location features. 

Therefore, we created a subpopulation in which all events at locations from which colonoscopies were never ordered 

were removed. The resulting population included 14 locations. While the combined classifier run on this 

subpopulation’s AUC decreased to 0.893 (Table 4) and the individual location class classifier’s AUC decreased to 

0.760, the AUC was still highly predictive. By examining the events, we found that 6 locations ordered 85% of all 

the colonoscopies, inflating the predictive value of location. Using an oversampled positive class and p ≥ 0.5 

threshold, we found that the location classifier achieves a sensitivity of 0.860 and specificity of 0.540. The classifier 

predicts positive for the 6 locations before mentioned, and achieves a high sensitivity at the cost of a low specificity. 

 

Comparison to existing guidelines 

We found that a model based on existing guidelines produced predictions with a sensitivity of 0.890 and a 

specificity of 0.239. Our model in comparison produced a sensitivity of 0.893 and a specificity of 0.750. 

 

Discussion 

In this study, we designed a system that creates a classifier for a given preventive order. Through testing, we found 

that a classifier using the feature classes age, last procedure, days from date scheduled, clinical note, appointment 

length and appointment location produced the best AUC. We compared the predictions from our classifier to those 

of a model based on existing guidelines, and found that it outperformed the model with a higher specificity. 

 

To target colonoscopies ordered for preventive screening, we created a subpopulation in which we 1) removed 

events where orders were made from the GI medicine and gastroenterology departments (these orders were often not 

made for preventive reasons), 2) removed the ICD9 parent code history features, because we found that those 

features actually lowered the combined classifier’s AUC, and 3) removed clinic locations that never ordered 

colonoscopies (without removing these extra locations, we would unfairly attain a high true negative rate and a high 

AUC even though the specificity was extremely low). Through the comparisons of the Gini importance of features, 

we found that age and location were very prominent features.  

 

The combined classifier performed the best in the subpopulation with events from gastro-related departments 

removed. In the smaller subpopulation in which events from locations where colonoscopy is never ordered are 

removed, the classifier performs worse. This occurs because there are a disproportionate number of locations from 

which colonoscopies are never ordered, allowing a few locations to have a high impact on the results. Removing the 

locations in which colonoscopies are never ordered removes a significant number of true negative classifications. 

We conclude that location is an important operational feature for Vanderbilt, though it may not be so in other 

medical centers. Overall, we found that the classifier detected clinical features useful for predicting colonoscopy 

orders: age, time from last procedure, and clinical note keywords. We were able to target appointments in which 

preventive colonoscopy orders are more likely to be ordered by including the operational features appointment 

location, appointment length, and days since date scheduled.  

 

From examining the misclassifications of our model, we found that a majority of the false positives are cases in 

which the patient does fit the mandated guidelines, and fit the operational guidelines that our model discovered. 

These may be cases in which preventive screening should have been ordered, but was not. Of the false negatives in 

Table 5. Top 10 features sorted by Gini importance. 

Feature Gini 

importance 

Age 0.225 

Location: VECL (Internal Medicine) 0.128 

Appointment length 0.104 

Days from date scheduled 0.074 

Location: OAKS (Internal Medicine) 0.065 

Location: J071 (Internal Medicine) 0.064 

Location: A044 (Internal Medicine) 0.055 

Time from last procedure 0.042 

Location: A015 (General Internal Medicine) 0.036 

Location: A041 (Internal Medicine) 0.036 
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our final model, we found that the greatest number of the false negative colonoscopies resulted from diagnostic 

colonoscopies performed for reasons such as blood in stool, but were not ordered by gastro-related departments.  

 

Comparing to a model created from existing guidelines for colonoscopy, we found that sensitivity of our model was 

equal to that of existing guidelines, but our model had a much higher specificity. This indicated that our model may 

be able to predict the appropriate times to recommend a colonoscopy based on the included operational features, 

which reduces the false negative misclassifications greatly. This can translate to CDS alerts which are timely placed. 

 

There are several limitations of this framework, however. One limitation is because we only tested the system on 

colonoscopy, we cannot yet confirm the system’s generalizability. The next step is to test this system on other 

preventive orders, and evaluate performance. Similarly, the data may also be overfitted to the VUMC’s nuances and 

specific clinical variations. The next step is to use data from other medical centers as input. Another limitation is that 

though we attempted to account for non-preventive colonoscopies by making a subpopulation with gastro-related 

departments removed, it is likely that there are still some colonoscopies which were ordered as a diagnostic from 

non-gastro departments for other reasons, such as rectal bleeding. The last limitation of note is that the system finds 

guidelines from existing clinician ordering practices. If clinicians have low adherence to the guidelines or new 

guidelines are released, then the clinicians must change their practices accordingly without decision support. One 

possible solution to speed up the classifier’s adaptation to new practices is to weigh more recent entries higher. 

 

Conclusion 

This study examines the problem of automatically generating recommendations for preventive orders using current 

ordering practices. The system differs from previous work in that it uses machine learning to predict if an order 

should be placed instead of groups of orders, and incorporates operational features to predict if a screening is needed 

at the time. The system outputs a classifier for colonoscopy that achieved an AUC of 0.893. This classifier achieved 

an equal sensitivity to a simple model based on existing guidelines, and a higher specificity. This work demonstrates 

the feasibility of utilization of EMR data to learn preventive order placement patterns, which can be used as 

recommendations in CPOE systems. We plan to expand this system to all preventive orders.  
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